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supplied to the te -barings.)

Successful steady-state operation of the 7205 bearings con-taining a thr'ee piece outer land riding graphite cage was limited

to less than 25,000 rpm (2880 rad/sec) at the axial loads selected,

25 lbf (110 N) and 100 lbf (445 N). Heat generated from the
solid lubricated rolling and sliding contacts was not removed from
the inner ring as rapidly as the heat removed from the outer ring
which resulted in a temperature differential between the inner and
outer rings. Test bearing seizure occurred rapidly due to this
"thermal gradient as the turbine drive was accelerated beyond
25,000 rpm. Attempts to improve bearing performance at the high-
er speeds by increasing the cooling air flow, increasing the bear-
ing housing temperature, decreasing load, and increasing the bear-
ing diametral clearance were unsuccessful.

The three piece graphite cage, drawing number L-23845, could
survive acceleration of the bearing inner ring to 55,000 rpm
(5760 rad/sec) without damage. These tests were accomplished by
rapidly accelerating the air turbine to 55,000 rpm in less than
15 seconds, then rapidly decreasing the turbine air supply.

An inner ring riding stainless steel shrouded graphite cage,
j drawing number L-23846, was found to be unstable due to the lack

of dampening and insufficient axial piloting.

Thermal analysis of the bearing system did not predict bearing
seizure at the test conditions selected. Further studies of the
bearing system revealed that if a slightly higher heat generation
rate was assumed, then bearing seizure would occur due to unstable
bearing temperatures. The increase in heat generated required

to result in bearing seizure, approximately 10 watts, could be
accounted for by ball-cage pocket sliding.

- Inspection of the bearing components after the tests was very
encouraging. The graphite films transferred to the silicon nitride
balls and M50 steel grooves were effective in preventing wear of
the bearing surfaces. The cage pocket wear and wear of the
graphite piloting surfaces were considered acceptable. Optical
microscopy of etched M50 ring cross sections revealed that
limited plastic deformation has occurred during the tests.
Plastic deformation of the inner ring groove surface was believed
to be significant, since plastic deformation would result in a
higher heat generation at the inner ring surface contributing to
bearing seizure. The silicon nitride balls did not exhibit any
evidence of plastic deformation.
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Abstract:

Functional evaluations of solid lubricated 7205 bearings
Swere conducted over the speed range, 10,000 rpm (1050 rad/sec) to

55,000 rpm (5760 rad/sec), using an air turbine drive system.
The 7205 bearings were comprised of silicon nitride balls, M50
steel rings, and graphite containing cages. Graphite films trans-
ferred from the cage to the ball surfaces, then to the groove
surfaces were the only source of lubrication. Liquid lubrication
was not supplied to the test bearings.

Successful steady-state operation of the 7205 bearings con-
taining a three piece outer land riding graphite cage was limited
to less than 25,000 rpm (2880 rad/sec) at the axial loads selected,
25 lbf (110 N) and 100 lbf (445 N). Heat generated from the
solid lubricated rolling and sliding contacts was not removed
from the inner ring as rapidly as the heat removed from the outer
ring which resulted in a temperature differential between the
inner and outer rings. Test bearing seizure occurred rapidly
due to this thermal gradient as the turbine drive was accelerated
beyond 25,000 rpm. Attempts to improve bearing performance at
the higher speeds by increasing the cooling air flow, increasing
the bearing housing temperature, decreasing load, and increasing
the bearing diametral clearance were unsuccessful.

The three piece graphite cage, drawing number L-23845, could
survive acceleration of the bearing inner ring to 55,000 rpm
(5760 rad/sec) without damage. These tests were accomplished by
rapidly accelerating the air turbine to 55,000 rpm in less than
15 seconds, then rapidly decreasing the turbine air supply.

An inner ring riding stainless steel shrouded graphite cage,
drawing number L-23846, was found to be unstable due to the lack
of dampening and insufficient axial piloting.

Thermal analysis of the bearing system did not predict bear-
ing seizure at the test conditions selected. Further studies of
the bearing system revealed that if a slightly higher heat gener-
ation rate was assumed, then bearing seizure would occur due to
unstable bearing temperatures. The increase in heat generated
required to result in bearing seizure, approximately 10 watts,
could be accounted for by ball-cage pocket sliding.

Inspection of the bearing components after the tests was
very encouraging. The graphite films tranzferred to the siliconnitride balls and M50 steel grooves were effective in preventing
wear cf the bearing surfaces. The cage pocket wear and wear of
the graphite piloting surfaces were considered acceptable. Opti--
cal microscopy of etched M50 ring cross sections revealed that
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limited plastic deformation had occurred during the tests. Plas-
tic deformation of the inner ring groove surface was believed to
be significant, since plastic deformation would result in a higher
heat generation at the inner ring surface contributing to bear-
ing seizure. The silicon nitride balls did not exhibit any
evidence of plastic deformation.

i4
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) - Preface:

This report presents the results of an experimental study
which investigated solid lubrication of 7205 angular contact
bearings at high speed. The solid lubricant was supplied to the
bearing surfaces from the solid lubricant reservoir (graphite
containing cage) by ball-cage pocket sliding. The work was
conducted by SKF Technology Services, at SKF Industries, Inc.,
King of Prussia, Pennsylvania, for the U.S. Naval Air Systems
Command, Washington D.C., 20361, under contract number N00019-80-
C-05G5. This report is the final technical report issued on the
program entitled, "Solid Lubricated Silicon Nitride Bearings at
High Speed and Temperature, Phase I." The program was conducted
during the period extending from Sentember 1980 to October 1981.

The author wishes to acknowledge the valuable contributions
of SKF personnel consulted during the course of the program. The
contributions of B. Carlson, R. Doyle, M. Ragen, M. Overholtzer,
F. Morrison, and L. Sibley are greatly appreciated. The
contributions of W. Rosenlieb in conducting and defining the
experiments are gratefully acknowledged. The patient typing of
this report by K. Helicher and A. Hindo is appreciated.
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1.0 Introduction

1.1 Overview

Advancements in the performance of high speed turbomachinery
require the rotating turbine components to operate at higherspeeds and higher temperatures. The temperatures projected for
the bearing locations of compact, limited life, high performance
turbine engines exceed the capability of conventional lubrication
systems and conventional metal bearing alloys. These high tem-
perature bearing locations will require the development and use
of a solid lubricated bearing.

' SKF Industries with funding from the Naval Air Systems Com-
mand has been investigating (1, 2, 3] a bearing quality ceramic,
hot pressed silicon nitride (HPSN), which has the potential to
operate at the arduous service conditions projected by the engine
manufacturers. Previous programs [2, 3] have demonstrated that
the HPSN has an acceptable oil lubricated bearing fatigue life
and that the material can be effectively lubricated by graphite
transfer films at 1000 0 F (540 0 C).

Although these programs have demonstrated the silicon ni-tride fatigue life capability and effective solid lubrication of

silicon nitride rolling elements, expertise with solid lubri-
cated rolling element bearings at temperatures and speeds of
interest to turbine designers is practically nonexistent. Taylor
and coauthors [4] demonstrated that properly designed low speed
bearings could function at 1000OF (540 0 C) and 1500OF (815 0 C).
These bearing tests were conducted in protective nitrogen and
argon atmosphere which is not considered practical for most
applications.

Boes [5] has shown that titanium shrouded WSe 2 -In-Ga com-
posite cages were operable at speeds less than 30,000 rpm. Rapid
composite wear resulted in excessive transfer film build up on
the races and balls causing a loss of bearing internal clearance
and bearing seizure.

Dayton, Sheets, and Shrand [6] investigated a slotted inner
ring concept to assist in cooling the inner ring of a solid
lubricated 7204 bearing. Their investigation revealed that at
high speed cage unbalance was a considerable problem,and that
bearing operating speed had the most significant effect on
bearing temperature. Due to the cage unbalance, the effective-
ness in cooling the bearing by a slotted inner ring could not be
determined.

Recently, Nypan [7] nas tested a 61906 angular contact bear-
ing to 47,000 rpm using a MoS 2 sputter coating on the bearing

4
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surfaces. His investigation showed that the ball-cage pocket
forces were approximately 9 lbf (40 N). No information was given
on the test time at 47,000 rpm prior to failure of the lightly
loaded bearing.

1.2 Program Objectives

The objective of this program was to investigate cage
designs suitable for use with Pure Carbon P2003 graphite for high
speed 7205 angular contact ball bearings. The test condition
goals for the program were 55,000 rpm at a 100 lbf (450 N) thrust
load at ambient temperature conditions.

1.3 Program Approach

Due to cage, bearing, and test complexity resulting from
scale-up from solid lubricated four ball tests to solid lubri-
cated full scale high speed angular contact bearings, the pro-
gram "Solid Lubricated Silicon Nitride Bearings at High Speed and
Temperature - Phase I," utilized a hybrid bearing to demonstrate
the capability of the solid lubricant/cage system. The hybrid
bearing consists of M50 steel rings, silicon nitride balls, and a
cage containing solid lubricant. The hybrid bearing was evalu-
ated using three different cage designs without the use of liquid
lubricants at ambient temperature conditions to a maximum speed
of 55,000 rpm. A specially designed test rig consisting of an

k air tutbine drive, bearing housing, and load system was used to
simultaneously test two solid lubricated bearings.

Analysis of the Phase I test results will yield advanced
solid lubricated silicon nitride bearing design concepts.
The present test system will be modified for the evaluation of
solid lubricated silicon nitride bearings at 1000OF (540 0 C) at
55,000 rpm (5760 rad/sec) with a 100 lbf (450 N) thrust load.
These bearings will be evaulated during the program "Solid
Lubricated Silicon Nitride Bearings at High Speed and Temperature
- Phase II." Figure 1 presents a flow chart containing the major
tasks in Phases I and II.

2.0 Program Overview

AC the initiation of the program "Solid Lubrication of

Silicon Nitride Bearings at High Speed and Temperature - Phase
I," it was believed that the investigation of various cage
designs for solid lubricated hybrid ball bearings would yield
valuable information on the bearing behavior without oil lubri-
cation. Two basic cage designs were selected; a segmented 3
piece graphite cage and a stainless steel shrouded graphite cage.
Although the behavior of the Pure Carbon P2003 at high tempera-
ture in rolling contact between M50 and silicon nitride had been

5
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Figure 1 Logic Chart for "Solid Lubricated Silicon NitrideBearings at High Speed and Temperature, Phases Iand III"
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demonstrated previously [3), the heat generation rate, cage wear,
and cage unbalance at high speed in a rolling contact bearing
were virtually unknown.

The first tests with a' segmented cage indicated two require-
ments for successful operation of the outer land riding cage
concept. First of all, the bearing land surfaces must be smooth
to prevent rapid cage wear. In addition, bearing diametral
clearances must be significantly increased compared to oil lubri-
cated bearings to avoid bearing seizure. The bearing internal
geometry must also be designed to tolerate a decrease in clear-
ance due to the solid lubricant build-up and thermal expansion of
the inner ring.

Additional evaluation of the segmented cage concept utilizingan increased bearing diametral clearance, .003 in (75 pm), revealed
that the temperature differential between the inner and outer
ring increased with increasing speed. Operation of the solid
lubricated bearings was limited to approximately 25,000 rpm (2600
rad/sec). Increasing the speed resulted in bearing seizure since
theAT between the rings exceeded 250OF (120 0 C). ThisA T was
measured during the tests and verified by calculations utilizing
the bearing clearance and thermal expansion coefficients of each
bearing component.

A significant difference in the change of diametral clear-
ance with bearing material was realized when comparing M50 steel
properties to silicon nitride. For the hybrid bearing investi-
gated, aAT of 250OF between the inner and outer ring will pre-
cipitate failure resulting from a loss in clearance and the cor-
responding large increase in contact stress. A silicon nitride
bearing was predicted to tolerateAT's greater than 500OF (2600C)
without difficulty as shown in Figure 2. The low thermal ex-
pansion coefficient of silicon nitride should have a major impact
on solid lubricated bearing performance at high speed.

One other major point was observed during testing of the
segmented cages. Extending the cage rail beyond the bearing
envelope was detrimental. Unsupported sections of the cage can
result in a flexural stress resulting in circumferential crack-
ing through the cage web. Predictions of heat generation at
high speed also indicatcd that a light weiqht fully supported segmentedcage has a lower heat generation rate than heavier segmented
cages.

Evaluation of a shrouded graphite cage confirmed the work of
other investigators [6]. Unlike the segmented cage which is
piloted by the outer land and groove, obtaining stability in a
stainless steel shrouded cage will require considerable design

Z expertise. Guidance and dampening of a shrouded cage is dif-
- •ficult since the cage contacts tne ring at one location. De-

I7
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Figure 2 Effect of Thermal Gradients on Bearing Contact
iAngle and Contact Stress for Hybrid and Silicon

~ !(Predicted using 0.003 in. [75 um] diametral clearance)
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creasing ball-pocket clearance may result in improved cage sta-
bility with an increase in heat generation.

In summary, the design of a high speed solid lubricated
bearing is a difficult task which requires expertise in design,
thermal modelling, and materials. Evaluation of the Phase I test
results has shown potential for solid lubricated silicon nitride
bearings. Development of a successful solid lubricated bearing
for high speed applications will require proper selection of
the bearing internal geometry, cage design, solid lubricant,
and bearing mounting system.

3.0 Component Design, Manufacture, Inspection and Assembly

3.1 Component Design

3.1.1 Bearing Design

A 7205 type hybrid bearing comprised of nine silicon nitride
balls, an M50 steel outer ring, an M50 steel inner ring, and a
graphite containing cage was selected for evaluation. 6205 VFX
aircraft quality M50 rings were modified to an angular contact
hybrid bearing by grinding the appropriate bearing lands and
replacing the M50 steel balls with silicon nitride balls. Fig-
ures 3 and 4 depict the modifications to the bearing lands neces-
sary for bearing assembly with the solid lubricant cages. The
rings shown in Figure 3 were used with the outer land riding
cages, while ring modifications presented in Figure 4 were used
with the inner land riding cages.

The 7205 bearing internal geometry contained in Table 1 was
analyzed at two speed conditions using an SKF SHABERTH computer
program modified for solid lubrication and the elastic properties
of the silicon nitride rolling elements. As can be seen in Table
2, this analysis predicts an adequate bearing life and realistic
Hertzian contact stresses for the bearing design and test con-
ditions selected. The heat generation rate at 55,000 rpm (5760
rad/sec) resulted in concern due to the possibility of decreasing
the bearing diametral clearance. A thermal mass model of the
high speed bearing test rig drawing No. L-81108 was prepared to
determine the effects of the heat generation rate on the bearing
internal clearance.

By using the thermal mass model of the high speed test rig,
a steady state inner ring temperature was calculated assuming
three different friction coefficients for graphite transfer films
in the Hertzian contact zone. The friction coefficients chosen
(/f = 0.05,11f = 0.10, andlif = .15) were believed to bracket the
friction coefficient for Pure Carbon P2003 transfer films at a
200 ksi (1450 MPa) contact stress. As may be seen in Table 3,
the inner ring temperature ranged from 525OF (274 0 C) to 833 0F
(4 4 5 0C) depending on the friction coefficient. The relatively

9
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- Figure 3 Bearing Envelope Used with Outer Land Riding Cages
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Figure 4 Bearing Envelope Uscd w"-h Inner Land Riding Cages
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Table 1 - Hybrid Bearing Design Evaluated by SHABERTH
Computer Program

A Ball Diameter: 7.9375 mm (0.3125 inch)

Ball Complement: 9

Contact Angle: 250

Pitch Diameter: 39.040 mm (1.536 inch)

Diametral C-earance: 0.031 mm (0.0012 inch)

Groove Radius: 4.1275 mm (0.1625 inch) - inner

4.143 mm (0.1631 inch) - outer

Conformity: .52 - inner and outer

S

U
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Table 2 - SHABERTH Computer Program Output for 7205 Bearing

Containing Silicon Nitride Balls and Solid Lubricated

Case 1 Case 2

Shaft Speed 10,000 RPM (1050 rad/sec) 55,000 RPM (5760 rad/sec)

Thrust Load 100 lbf (450 N) 100 lbf (450 N)

Cage Speed 4070 RPM (425 rad/sec) 22,950 RPM (2400 rad/sec)

Contact Angle

Inner Race 230 290

Outer Race 230 150

Hertzian Contact Stress

Inner Race 220 ksi (1540 MPa) 210 ksi (1450 MPa)

Outer Race 185 ksi (1280 MPa) 210 ksi (1450 MPa)

Heat Generation Rate: [if = 0.05 10 watts 60 watts

Pf = 0.15 170 watts

Bearing LI0 Life 3200 hours 750 hours

13
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high predicted bearing temperatures are due to frictional heat
generation and the low thermal conductivity of the stainless
steel test rig (174 PH stainless).

Since the predicted inner ring temperature at the maximum
temperature 833 0 F (445 0 C) was close to the maximum safe operating
temperature of the M50 bearing steel, an analysis of the effect
of cooling air on bearing temperature was conducted for the
bearing-test rig system. Figure 5 shows that adding 4 cubic feet
of air per minute to the test rig will reduce the inner ring
maximum temperature to 500OF (2600C), which was well within the
capability of M50 bearing steel.

One other potential problem area was investigated, that of
reduced bearing clearance due to inner ring thermal expansion.
The bearing clearance was calculated using the results of the
SHADERTH program presented in Table 3. With a M50 bearing, steel
balls and rings, a net loss of clearance would result for all
three cases investigated. For the hybrid bearing, it was deter-
mined that the bearing clearance increases due to the thermal
expansion of the bearing outer ring, which has a 63% larger mean
diameter than the inner ring. Since the inner ring temperature>

ball temperature >outer ring temperature, this temperature
profile normally results in a net loss in bearing clearance. The
low thermal expansion coefficient of the Si 3 N4 ball resulted in a
net gain in bearing clearance for a bearing operating at the
temperatures predicted in Table 3.

3.1.2 Cage Design Guidelines

The solid lubricant/cage systems selected for evaluation at
high speed in 7205 angular contact hybrid bearings are the result
of literature review and conversations with experts in the field.
Review of the literature [8, 9, 10, 11, 12] revealed very little
information pertaining to the solid lubrication of rolling
contact bearings at high speed and temperature. Most knowledge
of cage design concepts has been restricted to oil lubricated
gyro-type bearings. Instabilities in the bearing/cage system for
gyro bearings can result in large spacecraft point errors. There-
fore, computer simulation of gyro bearing cage systems have been
used to predict the dimensional tolerances required for stable
gyro-cage operation.

No proven models or experience exists for a highspeed solid
lubricated bearing system. Also, in a solid lubricated bearing,
the cage must play a dual role. The cage must supply lubricant
and act as a ball separator.

The review of oil lubricated cage design, information on
solid lubricant cages, and results from the NAVAIR Program [3]

4 provided guidelines for the solid lubricant cage design.
SU
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V Figure 5 Predicted Bearing Temperature as a Function of
Air Flow Rate through Test Rig Design L-81108
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The general guidelines for solid lubricant cage design based
on oil lubricated cage studies were as follows:

1. Ball pocket clearance should be greater than cage to
land clearance.

2. Cage material should have a low density.

3. High speed bearings should have outer land guided cages,
if possible.

The cage design guidelines from the NAVAIR program

1. Material must be an effective solid lubricant (P2003
graphite chosen).

2. Ball-cage contact surface should be initially non-
conforming to allow initial rapid cage wear for rapid
solid lubricant transfer.

Based on the literature review [8, 9, 10, 11, 12] and con-
versations with other investigators in the field of solid lubri-
cation, three cage designs were selected for evaluation in the
7205 angular contact bearing. Figures 6 and 7 show outer land
riding segmented graphite cage concepts. In Figure 6, the graph-
ite segments are completely constrained by the outer ring of the
bearing. The hoop tensile stress normally associated with a high
speed cage is minimized by segmenting the cage. The major stresses
experienced by this cage include ball loading at the cage pockets,
flexure stress due to bending of the segments, and impact loading
at the ends of the cage segments. Axial stability of the cage
segments is obtained by using the outer ring groove to pilot each
segment. Stress calculations had indicated that the cage design
shown in Figure 6 could fracture due to bending of the cage seg-
ments. Therefore, the cage design utilizing an extended cage
rail was developed, Figure 7.

A conventional inner land riding cage design was also
selected for evaluation. Figure 8 shows the drawings of the 174PH stainless steel/graphite cage. In this design, the possibil-ity of graphite fracture was reduced by placing the graphite in

compression. Based on the thermal expansion of 174 PH and the
Pure Carbon P2003 graphite, an 0.008 in (0.20 mm) interference
fit was used to maintain the interference at a 1000 0 F (540 0 C)
test temperature. The shrouded graphite cages were evaluated in
the bearing design shown in Figure 4.

SKF TECHNOLOGY SERVICES 17
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Figure 6 Graphite Segmented Cage Design L-23845
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Figure 7 Graphite Segmented Cage Design L-23875 with
Cage Rail Extending Beyond Bearing Envelope
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Figure 8 Stainless Steel Shrouded Graphite Cage
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3.2 Manufacture and Inspection

3,2.1 Silicon Nitride Balls

3.2.1.1 Material

The ceramic material used fcr the manufacture of the 0.313
in (7.95 mm) balls and purchased for Phase II ring manufacture
was Norton NC132 hot pressed silicon nitride (HPSN) obtained from
the Norton Company. Quality control procedures were implemented
in the areas of raw material inspection as well as non-destructive
evaluation of the finished parts to assure production of the
highest quality silicon nitride balls.

"'he Norton certification data and SKF certification indicated
that the silicon nitride utilized in ball manufacture was compar-
able to that used in previous programs [2, 31.

3.2.1.2 Dimensional Quality

The 160 silicon nitride balls produced during this program
conformed to AFBMA grade 10 roundness requirements. Grade 10
balls have a maximum allowable 2 point out of roundness of 10 x
10-6 in (0.25 pm). Surface roughness was approximately 1 x
10-6 in AA (0.02 pm AA). Sufficient ball quantities were
produced in Phase I to allow completion of all scheduled tests
for "Solid Lubricated Silicon Nitride Bearings at High Speed and
Temperature - Phases I and II.

3.2.1.3 Non-Destructive Evaluation

The silicon nitride balls were subjected to a 100% fluorescent
dye penetrant inspection. A sensitive fluorescent dye penetrant
(Zyglo ZL-30; ZR-10A) was used to impregnate the balls at Peabody
Testing/Magnaflux. Visual inspection was conducted using ultra-
violet light. No material related defects were observed by this
technique.

Inspection of the ball surface by scanning electron microscopy
did not detect any evidence of inter connected porosity or other
deleterious conditions.

3.2.2 M50 Steel Rings

Existing SKF 6205 VFX M50 steel rings were converted to the
7209 angular contact bearing by grinding the appropriate bearing
idnd. The measured groove radius was 0.163 in (4.142 mm) on the
inner ring and 0.167 in (4.23 mm) on the outer ring.

3.2.3 Graphite Containing Cages

The segmented cage designs, SKF drawing numbers L-23845 and

21
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L-23875, shown in Figures 6 and 7, were purchased from Pure Car-
bon Co. Five cages of each design were obtained from Pure Carbon
Co. The graphite used as the solid lubricant was Pure Carbon
P2003 graphite which was shown to be effective at preventing
silicon nitride wear and M50 steel wear at high temperatures [3].

The stainless steel shrouded graphite cage shown in Figure
8 was fabricated at SKF. Four 174PH stainless steel rings were
finished to the dimensions shown in Figure 9. The graphite was
then inserted into the stainless steel shroud by heating the
stainless steel ring to approximately 1200 0 F. The room tempera-
ture graphite ring was then forced into the shroud. After allow-
ing the assembly to cool to room temperature, the ball pockets
were drilled through the graphite. The inner diameter was then
machined to the drawing requirements. Figure 10 depicts three
174PH stainless steel shrouded cages to SKF drawing L-23846.

3.3 Bearing Assembly

The bearing rings and silicon nitride balls were ultrasonic-
ally cleaned in acetone prior to assembly. The bearing outer
rings were then heated to approximately 400OF (200 0 C) to facilitate
assembly. Figure 11 shows the cages and assembled bearings.

4.0 Experimental Procedure

4.1 Test Equipment

A bearing test rig with high temperature capability was
designed and fabricated for this program. The bearing test
system shown in Figures 12, 13, and 14 was designed to test two
solid lubricated bearings simultaneously. No additional support
bearings were required in the high temperature test rig. The
test bearings were axially loaded by a calibrated load beam
through a load plug and the shaft.

The bearing test rig was coupled to an existing SKF Barbour-
Stockwell No. 1658 air turbine. This air turbine has a speed
capability in excess of 55,000 rpm (5760 rad/sec).

The 174 PH stainless steel bearing housing contained heaters
capable of 1000 0 F (540 0 C) operation for extended periods of time.
The cartridge heaters were circumferentially spaced in the bearing
housing.

Since computer analysis had indicated that cooling air would
be beneficial, filtered co,'ling air was supplied to the bearing
cavity. The cooling air flow rate could be controlled from
4 SCFM to 12 SCFM. The cooling air flow was not directed at the
bearing inner ring. However, the rig design required the air
flow to pass through the inner and outer rings of both test

Sbearings.

22
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Figure 9 174PH Stainless Steel Shroud and Graphite Insert
Used in Cage Design L-23846
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- - Figure 9 (continued)
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Figure 10 Photograph of Finished Shroudcl Cages
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Figure 11 Photograph of Cage Designs L-23845, L-23846, and

L-23875
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Figure 14 End View of Test Rig L-81108
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Bearing outer ring, load plug, and housing temperatures were
determined by iron-constantan thermocouples. The beaiing inner
ring temperature for the bearing contained within the load plug
was determined using an Ircon infrared pyrometer. A one half
inch diameter (13 mm) access port through the load plug was
directed at the bearing inner ring as shown in Figures 13 and
14.

Turbine speed was determined using a magnetic pickup system
supplied with the air turbine. Inlet air pressure to the turbine
and speed was controlled manually through series of air valves.

4.2 Test Procedure

The 7205 bearings were retained in a desiccator until test
evaluation. The three piece cage design L-23845 was evaluated
first, followed by the cage designs L-23875 and L-23846.

To initiate a test, two solid lubricated bearings containing
the same cage design were pressed onto each end of the 174PH
shaft. The measured interference was approximately 0.0007 inches
(0.018 mm) which reduced the bearing internal clearance by 0.0005
inches (0.013 mm). After pressing the bearings on the shaft, the
load plug was inserted over the load plug bearing. This completed
assembly was then slipped into the bearing housing. Once the
bearings were properly seated in the housing, the load was applied
through the load plug by a calibrated load beam. The thermocouples
and heaters were connected to the proper recording channels and
controllers. Ceramic fiber insulation was used to minimize the
anticipated temperature gradients between the inner and outer
rings. The test bearing shaft was coupled to the drive system by
a flexible connector.

Cooling air was supplied to the test bearing cavity at
approximately 4 SCFM. The tests were conducted by slowly in-
creasing the turbine speed by a manually controlled air valve. The
test procedure selected was to increase the speed 10,000 rpm
(1050 rad/sec) after bearing temperatures had stabilized.

Bearing temperatures, speeds, and general observations were
recorded on a data sheet for each test.

4.3 Inspection

The tested bearings were examined by low power optical
microscopy, optical microscopy, and scanning electron microscopy
with an attached x-ray wavelength analyzer. A sensitive three
point gauging instrument capable of detecting 0.00001 in (0.25

9 pm) was used to determine the ball diameter before and after the
tests.

U
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5.0 Results and Discussion

5.1 Introduction

Appendix A presents a sequential listing of the high speed
bearing test summaries. The following subsections present the
results and discussion for the bearing cage designs evaluated
during the course of this program.

5.2 Oil Mist Lubricated Bearings

The purpose of the tests with oil lubricated bearings was to
verify air turbine performance, control response, bearing align-
ment, and load distribution. The test rig check out runs were
conducted using standard 52100 steel 7205 C/P4 DGA bearings in
the bearing housing. For these tests oil mist lubrication was
supplied to the bearing cavity through the air cooling port in
the housing. The first set of 7205 C/P4 DGA bearings was
functionally evaluated to a maximum speed of 50,000 rpm (5760
rad/sec). Sl ioht speed variations were noted throughout the
test. However, by increasing the oil mist supply to the test
bearings from 10 psi to 17 psi it was possible to decrease the
magnitude of the speed variation. A total of 32 minutes of test
time was achieved at a shaft speed above 40,000 rpm (4200 rad/
sec).

Inspection of the test bearings revealed that the bearings
were poorly lubricated. Evaluation of the wear track on the
bearing rings revealed the possibility of an incorrect load
application.

A second test was conducted using two new 7205 C/P4 DGA
bearings with the oil mist pressure increased to the bearing
cavity. Approximately 13 minutes of test time was conducted
above 45,000 rpm (4700 rad/sec). A total test time of 4 minutes
was realized at 55,000 rpm (5760 rad/sec) prior to an increase
in bearing temperature and bearing seizure. Inspection of these
bearings confirmed that bearings were properly loaded and that
insufficient oil lubrication had precipitated failure. .ince
this series of tests had indicated the proper application of load
and 55,000 rpm turbine capability, testing with solid lubricated
7205 bearings was initiated.

5.3 Solid Lubricated Hybrid Bearings Utilizing a Segmented
Graphite Cage - Intital Tests

The first solid lubricated 7205 angular contact bearing
tests were conducted using a three piece segmented graphite cage,
SKF Drawing Number L-23845, for both test bearings. The un-
mounted bearing diametral clearance was 0.0012 in (31 pm). The
bearing inner ring - shaft interference fit used resulted in a
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4 reduction of the mounted diametral clearance to approximately
0.0007 in (18 pm). Therefore, the bearing housing temperature
was increased to 200OF (93 0 C) in an effort to preferentially

4 expand the bearing outer ring, thereby increasing the bearing
diametral clearance. Unfortunately, the temperatures measured by
thermocouples located at the inner and outer rings of the station-
ary bearings revealed that the inner and outer ring temperatures
were identical. Bearing diametral clearance could not be in-
creased by heating the bearing housing.

The first solid lubricated bearings were evaluated with a
0.0007 in (18 pm) clearance and the segmented graphite cage
design L-23845. A 100 lbf (450 N) axial load was applied to the
test bearings, then the bearing housing temperature was allowed
to stabilize at 200OF (93 0 C). Cooling air was supplied to the
bearing cavity at 4 SCFM for this test.

To initiate the test, the air valve to the air turbine was
opened manually. The turbine speed was increased to 10,000 rpm
(1050 rad/sec) and held at that speed until the bearing tempera-
ture had stabilized. The bearing temperature stabilized at 230°F
(ll0C) after approximately 2 minutes of test. The bearing inner
temperature was leb3 than 350OF (175 0 C), the lower limit of the
Ircon Infrared Pyrometer. Some cycling of the turbine speed was
noted, but believed to be relatively insignificant due to the low
torque capability of the air turbine at 10,000 rpm. Increasing
the turbine speed to 20,000 rpm (21GO rad/sec) resulted in an
outer ring temperature of 390 0 F, (200 0 C) and a 400°F (205 0 C) inner
ring temperature. Further increases in test speed, 30,000 rpm
(3150 rad/sec) resulted in bearing seizure. The maximum inner
ring temperature observed was 600 0 F (315 0 C), while the outer ring
temperature was beyond the recorder range of 390°F (200 0 C). The
observed temperature differential between the inner ring and
outer ring prior to bearing seizure was greater than the cal-
culated 85 0 F (30 0 C) necessary to reduce the bearing diametral
clearance to zero.

Inspection of the bearings revealed that the segmented cages
for both bearings were in excellent condition even though the
bearings had seized. Figure 15 shows the bearings after the
30,000 rpm test. The silicon nitride balls were evenly coated
with the graphite transfer film as can be seen in Figure 15.
Figure 16 presents the cage pocket wear marks and the piloting
wear marks. The cage which had been sliding against a rougher
bearing land had a larger wear area, as shown in the photo-
graphs in Figure 16.

The initial test conducted with two solid lubricated bear-
ings was encouraging due to the visually acceptable cage wear and
graphite transfer films on the bearing surfaces.
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Figure 16 Cage Pocket Wear Marks and Piloting Wear Marks

Observed on Segmented Cages
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A second series of tests was conducted at a 25 lbf (110 N)
load with the bearings having a diametral clearance of 0.0007 in
(18 pm). The segmented cage design L-23845 was used for these
tests. In this test series, the outer ring land surface was
ground to improve the surface finish. The purpose of this test
series was to gain more experience with the behavior of high
speed solid lubricated bearings and the test system.

thsThe initial test of the second test series was test 2-1. In
this test, the housing temperature was increased to 400 0 F (205 0 C)
to allow the outer ring to expand. No improvement in bearing
clearance was realized, since the inner ring and oater ring
temperatures were identical. This bearing was evaluated by gradu-
ally increasing the turbine speed to a maximum of 32,000 rpm
(3350 rad/sec). At 32,000 tpm the test bearings seized and the
turbine air pressure was shut off.

Visual inspection of the test bearing through the optical
pyrometer port in the bearing load plug revealed that the seg-
mented cages had not failed. A second test in this series, test
2-2, was initiated with ambient housing temperatures. Increasing
the bearing housing temperature was considered to be detrimental,
since no improvement in bearing diametral clearance was realized
and housing was not uniformly heated. Test 2-2 was conducted by
slowly increasing the turbine shaft speed while the bearing
housing was cooled with 4 SCFM of air. As can be seen in Figure
17, the bearing outer ring temperature continued to increase with
increasing speed. At 40,000 rpm (4200 rad/sec), bearing seizure
occurred. A maximum inner ring temperature of 450OF (230 0 C) and
outer ring temperatures of 3O00F (150 0 C) were observed prior to
bearing seizure.

The results of test3 2-1, 2-2, and 2-3 indicated that bearing
tziaperatures were considerably greater thaA predicted. In order
to demonstrate the capability of a segmented cage design, three
tests were conducted by rapidly accelerating the air turbine to
55,000 rpm (5760 rad/sec). Test 2-4, 2-5, and 2-6 demonstrated
that the segmented cage design could survive accelerations to
55,000 rpm. Figure 18 presents the maximum inner ring and outer
ring temperatures. Visual inspection of the segmented cage through
the pyrometer port in the load plug after tests 2-4 and 2-5 indi-
cated that the segments had survived the test. During test 2-6,
the air turbine air pressure was inadvertently increased instead
of decreased as planned. Bearing seizure at 55,000 rpm (5760
rad/sec) resulted in fracture of the segmented cage as well as

4 damage to the silicon nitride balls. A detailed examination of
the components was not conducted, since the test was not
considered representative.

U
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IFigure 17 Test Speed versus Recorded Temperature for Test 2-2
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Figure 18 Inner Ring and Outer Ring Temperatures

Observed During Tests 2-4, 2-5, and 2-6
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5.4 Evaluation of Solid Lubricated Angular Contact Bearings

5.4.1 Introduction

The initial tests with a solid lubricated angular contact
bearing, section 5.3, disclosed that the computer predictions of
bearing life and the thermal modelling did not completely
describe the test system. In addition to the optimistic
predictions of increased diametral clearance for a hybrid
bearing, two other factors were believed to contribute to bearing
failure:

1. Decreased bearing clearance due to interference fit.

2. Increased cage wear due to the surface roughness of the
outer ring.

Additional tests with solid lubricated bearings containing seg-
mented cages were conducted with increased diametral clearance
and improved outer ring land surfaces.

The bearing diametral clearance was increased by reducing
the silicon nitride ball diameter. Forty silicon nitride balls
were decreased in diameter by lapping then polishing, to yield
an unmounted bearing diametral clearance of 0.003 in (75 Pm) with
the existing rings. The surface roughness of the bearing lands
was improved by grinding the lands and polishing.

Further evaluations of bearings containing segmented
graphite cages were conducted using the increased diametral
clearance and the polished bearing outer land surfaces.

5.4,2 Tests with Cage Design L-23875

The cage design L-23875, Fi.gure 7, wa2 evaluated in test
numbers 3 and 4. In test number 3, the hybrid bearing had an
increased diametral clearance, 0.003 in (75 pm). Two bearings
were mounted on the shaftz the test system was assembled, and the
test initiated at ambient temperature. The shaft speed was
accelerated to 10,000 rpm (1050 rad/sec) and allowed to stabil-
ize. After approximately 10 nminutes, the outer ring temperature
stabilized at 150OF (65 0 C). The inner ring temperature was below
350°F (1750C), the temperature limit of the infrared pyrometer.
Accelerating the air turbine to 20,000 rmm (2100 rad/sec)
resulted in an increase in the outer ring temperature to 250°F
(120 0 C) and an inner ring temperature Df 4C 0 °F (2050C).

Since the bearing diametral clearance was increased for this
test series, another attempt at heating the housing to improve
bearing performance was initiated. The bearing housing tempera-
ture was increased to 250o0? (1 2 00c) to match the outer ring
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Stemperature experienced in the 20,000 rpm test with these
bearings. The air turbine shaft was accelerated to 23,000 rpm
which yielded a 550OF (290 0 C) inner ring temperature and a

400°F (205 0 C) outer ring temperature. An additional test to
33,000 rpm (3460 rad/sec) was conducted which resulted in bearing
seizure. The maximum temperatures observed were 750OF (4000C)
and 425 0 F (220 0 C) on the inner and outer rings, respectively.
Figure 19 shows the components used in this test series. As can
be seen, one segmented section was fractured. Visual inspection
of the other segmented sections disclosed a circumferential crack
pattern in another segment. The circumferential crack pattern
through the cage segment was believed to be related to flexure
of the unsupported portions of the cage. The flexure of the cage
would place a bending movement on the cage webs and eventual
fracture.

Test series 4 was conducted with two new cages of cage de-
sign L-23875. By gradually increasing speed, a series of tests
to 25,000 rpm were completed. Bearing seizure continued to be a

major problem even though the cooling air to the bearing cavity
was increased from 4 SCFM to 12 SCFM. An attempt to accelerate
the turbine to 55,000 rpm (5760 rad/sec) resulted in bearing
seizure and extensive damage to the segmented cages.

5.4.3 Tests with Cage Designs L-23845 and L-23846

The 174PH stainless steel shrouded cage design, L-23846, was

functionally evaluated in tests 5 through 8. In tests 5, 6, and
7, a segmented graphite cage of design L-23845 was used for the
load plug bearing while the shrouded cage design was evaluated in
the drive end portion of the bearing housing. This conservative
test approach was selected due to the favorable test experience
with the segmented cage design at low speed and the unknown
response of an inner land riding shrouded graphite cage design.

Comparisons of the ball pocket wear marks in the two cage

designs after test 5 disclosed that the segmented cage had trans-
ferred considerably more graphite lubricant to bearing surfaces
than the shrouded cage under identical test conditions. Since
test 5 was limited to 5,000 rpm (525 rad/sec) due to bearing

noise, test 6 was conducted at a higher speed 10,000 rpm (1050
rad/sec) while disregarding any bearing noise or squeal. Al-
though cage pocket wear was observed to be appreciable, a con-
tinuous graphite transfer film was not observed on the M50 steel

ring surfaces. This observation indicated that the high air flow
rate through the bearings, approximately 6 SCFM/bearing, was
removing the graphite from the bearings. Considerable evidence
of graphite particles down stream from the bearing confirmed that

graphite particles were removed from the bearing by the high air
flow rate.
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Test 7 was conducted to determine whether the air flow rate
did affect the solid lubricated bearing performance. In this
test, the air flow rate was reduced to zero SCFM from the 12 SCFM
air flow rate used in test 6. Test 7 progressed smoothly with
the same cages used in tests 5 and 6 to a maximum speed of 22,000
rpm '2300 rad/sec).

Thirty-three minutes into test 7, the bearings emitted a
"squeal." Disassembly and inspection of the bearings revealed

that a few silicon nitride balls had contacted the stainless
steel shroud. As may be seen in Figure 20, the silicon nitride
balls h.ad contacted the entire cage pocket circumference indi-
cating that the cage had moved axially throughout the entire
0.020 in. (0.5 mm) ball pocket clearance and the balls contacted
the stainless steel shroud in a few locations.

In test 8, two shrouded graphite cages of design L-23846
were evaluated simultaneously without air cooling. Initiation of
test 8 disclosed severe cage vibrations at low speed. Attempts
to increase the bearing speed were unsuccessful due to vibration
which threatened to destroy the solid lubricant containing cages.
Inspection of these cages revealed a 3600 wear track in the cageS~pocket. Inadequate axial guidance and the lack of cage dampening

were considered to be the main causes of failure in test 8.

5.5 Discussion of Solid Lubricated Bearing Concepts

5.5.1 Introduction

The development and successful demonstration of a high speed,
solid lubricated bearing requires the proper selection c' bearing
materials, lubrication systems, bearing monitoring systems, and
bearing design. The previous program [3] demonstrated that ac-
ceptable silicon nitride wear rates could be Echieved through the
use of graphite transfer films. The most effective solid lubri-
cant was Pure Carbon P2003 graphite based on analysis of the
silicon nitride wear measurements. In the simplified four ball
test system, used for investigations, the approximate bearing DN W's
an order of magnitude less than the 1.4 million DN at the 55,000
rpm (5760 rad/sec) goal for the program, "Solid Lubricated Sili-
con Nitride Bearings at High Speed and Temperature, Phase I." In
addition, small changes in solid lubricated bearing contact angle,
diametral clearance, and friction have considerably more influ-
ence on bearing performance that comparable changes in the
rolling four ball test system. For example, a small decrease in
diametral clearance due to thermal gradients or solid lubricant,
build-up results in a zelatively insignificant change in the con-
tact angle and stress in the four ball system. The spindle ball

S essentially "floats" on the three support balls which minimizes
the effects of these changes. A similar small decrease in bear-
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Figure 20 Graphite Cage Pockets in Shrouded Cage
After Test 7 Showing Ball Contact at the
Stainless Steel Shroud and Pocket Circumference

BALL-SHROUD CONTACT

90 DEGRQE VIEW OF POCKIET
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ing clearance in a 7205 angular contact can result in bearing
seizure, since the initial diametral clearance is fixed.
Clearly, correct interpretation of four ball test results and
full scale bearing tests are required to obtain a successful
solid lubricated bearing.

The major difficulties in analyzing and designing a high
speed, solid lubricated bearing stems from the dichotomy of
functions the cage must perform and the lack of design data at
the temperatures, pressures, and speeds a solid lubricated
bearing encounters. The cage must (1) supply lubricant (2)
maintain spacing of the rolling elements. Unfortunately, solid
lubricants generally rely on a low shear strength to provide a
transfer lubricant to the rolling elements. The lubrication and
strength requirements of the cage have resulted in novel cage
systems, including shrouded cages, cages containing lubricant
reservoirs, fiber reinforced cages, lubricant impregnated cages,
and segmented cages.

In addition to the obvious difficulties associated with cage
design, design of the bearing internal geometry and selection of
the bearing materials will have a significant influence on
bearing performance. The following subsections present designi guidelines for a solid lubricated angular contact bearing.

5.5.2 Material Properties

SThe geIection of hot pressed silicon nitride for the bearing
rings and balls is advantageous when designing a high temperature
solid lubricated bearinj. The corrosion and oxidation resistance
of a ceramic is necessary for long term high temperature applica-
tions. However, two other physical characteristics of silicon
nitride which significantly ie.,prove the probability of success
should be mentioned, therrial expansion and elastic modulus. A
low thermal expansion coefficient miutim.zes the change in contact
angle and diametral clearance as the thermal gradient between the
inner ring and outer ring increeses, In a typical bearing, the
inner ring is sub.:ected to a hiqher equilibrium temperature than
the outer ring; thereforeI bearing diametral clearance decreases.
As can be seen in Figure 21, the -hermal expansion coefficient
has a significant effect af the predicted maximum 4 T that a bear-
ing can survive.

The retention of a high elastic mudulus of silizon nitride,
Pigure 22, assures adequate load carrying cipability and mini-
Snizes the possibility of plastic deformation of the bearing
surfaces at hlgh tamperatute. Plastic deformation can increase
the friction coefficient duQ to hýstersis effects which are nor-
nimally considered insignificant to bearing performance. Figure 23
shows evidence of plastic deformation of the M50 steel during the
solid lubricated bea'-Lng tests.
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Figure 21 Effect of Thermal Gradients on Bearing Contact
Angle and Contact Stress for Hybrid and Silicon
Nitride Angular Contact Bearings
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Figure 22 Elastic Modulus of Silicon Nitride and M50

Bearing Steel as a Function of Temperature
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-Figure 23 Evidence of M50 Steel Plastic Deformation
Observed by Optical Microscopy on Etched
Cross Sections of an M50 Inner Ring

a-CARBIDES (UNDEFORMED REGION) b -LIMITED PLASTIC DEFORMATION

cCRACKING AND PLASTIC DEFORMATION
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5.5.3 Bearing Internal Geometry

The bearing internal geometry, consisting of bearing dia-
metral clearance and the ratio of the ball groove radii to the
ball diameter, has a significant influence on bearing performance.! The bearing diametral clearance must be sufficient to allow in-

corporation of a solid lubricant coating. Estimations of the
actual lubricant thickness range from 0.00001 in (0.25 pm) to

Z 0,00013 in (5 pm) oer surface. Mechanical measurements and
estimations of thickness based on ball reflectivity yield values
of 0.00001 in (0.25 pm) to 0.00002 in (0.6 pm), respectively.
The 0.00013 in (5 pm) per surface build up was calculated using
the volume of graphite removed from the cage and assuming that
100% of the lubricant was deposited on the bearing surfaces.
Figure 24 shows photographic projections of the wear marks
observed on the cage surfaces which were used to calculate the
volame of graphite removed from the cage. This method yields an
upper limit for the film thickness since graphite was observed
outside. the bearing envelope. Assuming that the actual solid
lubricant thickness was between 0.000039 in (I um) and 0.00008 in
(2 ixm) reveals that the decrease in bearing dianietral clearance
will be between 0.0003 in (8 pm) and 0.0006 in (16 pm) for a Pure
Carbon P2003 graphite lubricated bearing. Oufficient diametral
clearance is required to obtain satisfac't.ory solid lubricatedbearing performance.

Groove radii which depart from standard bearing practice
will be necessary to obtain a solid lubricated high speed bear-
ing. Normally, groove radii are selected cc maximize the bearing
fatigue life at a given set of conditions. In the case of a
solid lubricated bearing, the design guidelines should also
include minimizing the heat generated at the inner ring and theouter ring contacts. Bissett and coauthors [13]providedan analyti-
cal prediction of the heat generated a" the contacts for a
7207 bearing. Although the total heat generated due to cage -
land sliding, ball-cage sliding, and the contacts may not be
significantly altered, by changing the groove radii, the
redistribution of the heat generated at the contacts can be
improved by propcr selection of the groove radii.

5.5.4 Solid Lubricated Cage Designs

5.5.4.1 Segmented Cage Design

PAs reported in scction 3.1.2, after review of a number of
conceptual cage designs, two types of segmented cage designs were
selected for ihase I evaluation based on two major advantages of
the segmented cage design. Hoop stresses in the graphite wereIseliminated by this design concept while the segmented design
provided the maximum cross sectional thickness of solid lubricant
possible. Although a design review did not point out any major
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Figure 24 Wear Scars Produced by the Silicon NitricC ais

in the Segmen'-ed Cage Ball Pockets

01 in

Wear mark in d4'rection of shaft rotation.

Wear mark in diriFction opposed to shaft rotation.
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difficulties with a segmented cage, high spe~d testing did reveal
a major problem area, that of high heat generation due to the sliding
cage segments on the outer lqnd surfaces. The radial force on the
cage segment increases with the velocity squared while the heat
generation increases with velocity cubed. Figure 25 shows the
heat generation rate as a function of shaft speed for two co-
efficients of friction; uf = 0.05 and uf = 0.15. The turbine in-
let air pressure and turbine manufacturer supplied torque char-
acteristics were converted to the beat generation rate for the
bearings. These calculations indicated that the coefficient of
friction at the cage-land surface was approximately 0.05. Heat
generation due to friction torque was negligible, approximately
10 watts, compared to the heat generated at the sliding inter-
faces.

A calculation of the PV value (pressure and velocity) based
on the centrifugal loading and observed wear scar for the graph-
ite cage segments yielded a PV number of 750,000 psi ft/min whileS" performing satisfactorily. Typical PV numbers quoted in the

literature are less than 150,000 psi ft/min for graphite, indi-
cating that the sliding speeds and pressures are well beyond
conventional design guidelines.

The evaluation of a segmented cage 30,000 rpm (3140 rad/sec)
with excursions as high as 55,000 rpm (5760 rad/sec) lends cred-
ibility to the approach of developing a light weight segmented
cage which closely conforms to the bearing outer ring. The high-
er heat generation and the high PV value were severe detriments.
Therefore, it wiLl be necessary to develop a light weight cage
which closely conforms to the bearing land to decrease the PV
value. Supporting the cage by an air bearing would be ideal,
however, initial investigations into a cage supported by an air
bearing have indicated that it is not possible to develop an air
bearing capacity to completely support the cage segments.

The segmented cage concept appears feasible for 1.5 million
DN and slower solid lubricated angular contact bearings. By
reducing the cage mass and extending the bearing lands, it should
be possible to reduce the PV value and heat generation rate Lo an
acceptable level. The major advantage of the segmerte. cage
system is that the design remains stable at high speed due to the
pilo'ing of the cage segments by the ball groove and the bearing
lands.

r.5.4.3 Shrouded Cage Desiqns

The shrouded cage design investigated in Phase I failed due
to a lack of axial guidance and inadequate dampening. Axial
guidance can be obtained through the use of aA air beariAg on the
faces of the graphite cage. Radial cage guidance is partially
provided by the inner ring outer diameter. It should be realized
that the inner diameter of the cage contacts the outer diameter
of the inner ring at a sinqle line. Therefore, the dampening
available in the inner land riding cage design is limited to

49
SKF , ECHNOLOG ' SERV!CIS
'e II if)'J$Ti!Uh INC,



AT02DO0i2

Figure 25 Prediced IWaf- Generatio,'. Due to %,age Sliding
at Two Coefficients of Frici~on and Calculatei
liPýat Geriaration DeLtermined from Bearing Torque
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this contact and ball contacts. Sliding at the inner ring alsoresults n heat generation at a critical surface. Increasedheat generation at tho inner ring results in a high inner ringtemperature and decreased diametral clearance. If possible,* sliding should -occur at thA outer ring zurface where the beat -:an
be removed more easily and an increase in ring temperature
result- in a net gain in diametral clearance.

One possible ca-4e design would consist of a segmented 7agecoptairned in a stainless steel shroud. The graphite z'i•nents
could be clipped into position to maintain the graphite holespacing concentric with the holes in the stainless steel shroud.Sliding would oncur at the outer ring by extending the graphitebeyond the stainless steel shroud as shown in Figure 26. Axial
cage piloting would be obtained by utilizing an air bearing atfaces of the graphite segments. Radial piloting would beachieved by the graphite sliding against the bearing outer ring.Note that the stainless steel shroud was designed to carry
centrifugal loads as well as the ball pocket loading. Therefore,the graphite piloting surface would only be required to carry theunbalanced cage land force. The unbalanced cage land force isestimated to be less than 10 lbf (45 N). This cage-land forceresults in estimated PV values at the piloting surface less than
500,000 psi ft/min at a 55,000 rpm (5760 rad/sec) shaft speed.
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Figure 26 Corceptua3 Design for a Segmented Outer Land
Riding Cage Contained ?y a Metal Shroud
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6.0 Summary

The test techniques utilized in this program provided
insight into the complex requirements necessary for satisfactory
solid lubricated bearing performance at test conditions of
interest to gas turbine engine designers. Analysis of the test
results, solid lubricant cages, bearings, and the test system
identified failure mechanisms and the corrective action necessary
to significantly improve bearing performance. Factors contribut-
ing to the failure of the solid lubricated bearings at high speed
include the following:

1. Inadequate diametral clearance to allow for a
finite lubricant thickness.

2. Thermal gradients between the inner and outer
rings.

3. Inability of the bearing housing design to flex and
allow expansion of the outer ring.

4. High air flow rates necessary to cool the bearing
can remove the solid lubricant from the bearing.

5. Inadequate dampening and piloting of shrouded cage
designs.

Each of these areas can be addressed by proper modification
of the cage design, bearing design, and housing design to assure
satisfactory bearing performance at high speed and temperature.

Selection of the proper cage design and bearing design to
minimize the heat generation at the inner ring while providing
adequate cage dampening will be necessary in order to demonstrate
high speed, solid lubricated bearings. Two cage design approaches
appear to have potential for providing the required lubricant
while maintaining adequate dampening. A segmented cage design
and a shrouded segmented cage design appear to have potential for
high speed applications with existing technology.

The selection of the solid lubricant, Pure Carbon P2003
graphite, appears satisfactory based on the previous four ball
test results [3] and the 7205 bearing tests conducted during the
present program. This graphite's light weight, relatively high
strength, and excellent filming tendencies would be difficult to
improve upon for high temperature solid lubricated bearing
operation.
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7.0 Recommendations

1. Demonstrate high speed solid lubricated bearings in angular
contact using existing solid lubricants and materials. The
low thermal expansion coefficient of silicon nitride will
reduce the tendency for bearing seizure, while graphite
transfer films provide adequate lubricant films.

2. Continue the investigation of solid lubricant cage design
concepts with emphasis on outer land riding segmented cages,
and shrouded segmented cages axially piloted by air bearings.

3. Future research into higher temperature ( 10000F) and higher
speed ( 55,000 rpm for a 7205 bearing) will undoubtedly
require improved solid lubricants and cage designs. Material
research emphasis should be directed at solid lubricant
materials which melt at the high temperatures experienced in
the contact, and thereby achieving very low coefficients of
friction. Consideration should also be given to solid lubri-
cant retainers fabricated from high strength, porous ceramic
materials. The low thermal expansion coefficient and high
elastic modulus of ceramics will be necessary to insure
adequate piloting and achieve carefully controlled dimen-
sions over the wide temperature range solid lubricated
bearings are expected to perform.
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APPENDIX 
A

7205 Bearing Tests
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Test A:

Test Objectives Check manual control system, air
turbine, and bearing load system.

Test Approach Two standard 52100 steel 7205 C/P4 DGA
bearings were tested with oil mist
lubrication by slowly accelerating the
air turbine to 55,000 rpm (5760
rad/sec). The oil mist pressure was
set at 22 psi for the turbine and 10
psi to the test bearings. An axialload of 100 ibf (450 N) was applied to
the test bearings. Turbine speed was
manually controlled by a series of air
valves.

Test Summary An erratic turbine speed was observed
during the first six minutes of test.
Increasing the oil mist pressure from
10 psi to 17 psi decreased the speed
variation to + 1000 rpm at 27,000 rpm.
However, accelerating the air turbine
variation to + 3000 rpm. A total of
226 minutes was recorded on the test
bearings. Ten minutes of test at
50,000 rpm were conducted prior to
system shut down due to an increasing
bearing temperature.

Inspection Summary The test bearing contained in the load
plug experienced lubrication distress.
The ball wear track was observed at an
incorrect contact angle, possibly
indicating an incorrect load applica-
tion on the bearings.

Test B:

Test Objectives Same as Test A and verification of
proper load application on test
bearings.

Test Approach Same as Test A. Oil mist pressure was
increased to 40 psi to the test
bearings.
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Test Summary A cyclic test speed was observed at
constant turbine inlet pressures
indicating torque changes in the oil
lubricated test bearings. The steel
bearings were tested at 55,000 rpm
(5760 rad/sec) for four minutes prior
to bearing seizure. The maximum outer
ring temperature recorded was 290°F
(140 0 c).

i Inspection Summary Inspection of the bearing rings
revealed that both bearings were
properly loaded. Failure of the load
plug bearing was due to inadequate
lubrication.

Test 1

Test Objective Evaluate two 7205 hybrid bearings con-
taining segmented graphite cage design
L-23845.

Test Conditions 100 lbf (450 N) axial load applied
equally to both bearings

* housing temperature 200OF (930C)

0 4 SCFM cooling air to bearing
cavity

0.0007 in. (18 pm) diametral
clearance after shaft interference
fit

Test Summary After increasing the turbine speed to
10,000 rpm (1050 rad/sec), the bearing
outer ring temperatures had equilibrated
at 250oF (120 0 C). Increasing the speed
to 20,000 rpm (2100 rad/sec) resulted
in an outer ring temperature of 390OF
(200 0 C). An additional increase in
test speed to 30,000 rpm (3150 rad/sec)
resulted in bearing seizure. A maximum
inner ring temperature of 600°F (3150C)
was recorded. The total test time was
13 minutes.
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Inspection Summary The M50 rings and silicon nitride balls
were damaged due to bearing seizure.
The segmented cage was in good
condition. The heavy wear observed on
the cage outer diameter was related to
tUe poor land surface finish, approx-
imately 60 p in. RMS.

Test 2-1

Test Objective Determine if preferentially heating
outer rings will increase bearing
clearance and if reduced load will
improve bearing performance for hybrid
bearing containing segmented cage
design L-23845.

Test Conditions Same as Test 1 with except'on that load
was reduced to 25 lbf t110 N).

Test Summary Variations in cooling air flow and
housing temperature did not result- in a
temperature differential between the
inner and outer rings. Bearing speed
was increased gradually to 32,000 rpm
(3350 rad/sec) prior to bearing seizure.

Inspectioi; Summary All components were in excellent
condition.

Test 2-2

Test Objective Evaluate cage design L-23845.

Test Conditions 25 lbf (110 N) axial load applied
to test bearings

* bearing housing temperature was
800F (270C)

air cooling supplied to bearing
cavity at 4 SCFM.

Test Summary The turbine speed was gradually in-
creased to 40,000 rpm (4190 rad/sec)
over a 60 second period prior to
evidence of impending bearing seizure.
A maximum temperature of 450oF (2300C)
was recorded at the inner ring and
300OF (150 0 C) at the outer ring.
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Inspection Summary Test rig was not disassembled. The
segmented cage was visually inspected
through the infrared pyrometer port.
This cage appeared undamaged.

Test 2-2

Test Objective Repeat of Test 2-1.

Test Conditions Same as Test 2-2 with exception
that air cooling flow rate was
increased to 12 SCFM.

Test Summary The turbine speed was held between
10,000 RPM and 12,000 RPM for 75 min-
utes. Test was stopped due to bearing
temperatures increasing.

Inspection Summary Same as Test 2-2.

Tests 2-4, 2-5, and 2-6 Repeat of 2-1.
Test Summary 2-4 Accelerated turbine from 0 to 52,000

RPM in 5 seconds then air supply
cut to turbine. I.R. 480OF - O.R.
180 0FA T = 300 0 F. Front bearing
cag& segments OK.

2-5 Accelerated from 0.70 to 52,000 RPM
in 8 seconds then air supply cut to
turbine

I.R. = 600OF O.R.s230 0FA&T - 370OF

2-6 Accelerated from 0 to 54,000 RPM in
12 seconds air supply increased
accidentally resulting in greatly
increased air pressure to turbine
as bearing seized.

I.R. = 700OF O.R. = 380°F &T - 320°F

Inspection Summary Two segments survived Test 2-6. Three
silicon nitride balls exhibited cracks
due to high loading.
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Tests 3-1, 3-2, and 3-3

Test Objective Evaluate cage design L-23875 with
bearing having increased diametral
clearpnce.

Test Conditions * 25 lbf (110 N) axial load

* Housing temperature 80OF (92 oC)

for test 3-1.

* Air cooling supplied at 4 SCFM.

Test Summary 3-1 * Test speed was held to 10,000 rpm
(1050 rad/sec) while allowing
bearing temperatures to stabilize.
After approximately 10 minutes the
outer ring temperatures had
stabilized at 158OF (700 C).
increasing the speed to 20,000 rpm
(2100 rad/sec) resuited in an outer
ring temperature of 250OF (1200C)
and an inner ring temperature of
400OF (205 0 C). The system wac shut
off to check the test bearings. No
seizure of the test bearings was
noted.

3-2 The housing heaters were turned on
and the housing temperature was
allowed to stabilize at 250°F (120 0 C)
prior to starting the air turbine.
Test speod was rapidly increased to
23,000 rpm :2410 r&d/sec) A maximum
inner ring temperature of 550oF
(290 0 C) and an outer ring tempera-
ture of 400OF (205 0 C) was recorded.

3-3 * In Test 3-3, the bearings were
accelerated to 33,000 rpm (3400
rad/sec) when high temperatures
were observed on the inner and
outer rings. Monitoring the Ircon
infrared pyrometer yielded at maxi-
mum inner ring temperature of 750OF
(400 0 C). The thermocouples recorded
a maximum outer ring temperature of
550OF (290 0 C) prior to test shut
down.

C, -"
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Inspection Summary Visual inspection of the load plug
bearing cage through the pyrometer port
revealed that the segmented cages had
survived test 3-1 and 3-2. Inspection
after test 3-3 revealed that.one cage
segment had fractured. Disassembly
revealed that one cage segment in the
load plug bearing had fractured axially
and circumferentially. One other
segment also exhibited signs of dis-
tress. This segment was circumferentially
cracked through the cage webs, but
remained intact. The cage segments
from the bearing in the drive portion
of the rig were undamaged. The silicon
nitride balls and M50 rings were in
excellent condition after this test
series.

Tests 4-1, 4-2, 4-3, and 4-4

Test Objectives Evaluate cage design L-23875 with an
increased airflow to the test bearings.

* Test Conditions a 25 lbf (110 N) axial load

* Housing temperature 80OF (270C)

* Air cooling supplied at 12 SCFM.

* Load plug modified by drilling two
0.25 in diameter holes through the
plug to increase cooling.air flow
to the test bearing in the load
plug. Previously all air flow
exited through the 0.5 inch
infrared pyrometer port.

Test Summaty 4-1 Bearing temperature equilibrated at
160OF (700 C) at 16,000 rpm (1680
rad/ sec). The turbine speed was
then increased to 25,000 rpm (2620
rad/sec) when bearing seizure was
imminent. The turbine was stopped
to prevent bearing seizure.
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4-2 Speed increased to 25,000 rpm (2620
rad/sec) then turbine by rapidly
accelerating the air turbine. Re-
corded 450OF (230 0 C) inner ring
temperature anO 210OF (100 0 C) outer
ring temperature prior to shutting
dowr the air turbine. Test bear-
ings rotated freely by hand indi-
cating that the bearings were not
damaged.

4-3 Heated housing to 200OF (93 0 C) to
provide clearance for outer ring to
expand. Aftec housing temperatures
had stabilized, the test 4-3 was
initiated by rapidly accelerating
the turbine to 26,000 rpm (2720
rad/sec). Noise generated at
26,000 rpm indicated that the
bearing was beginning to seize;
therefore, the test was stopped.

4-4 Increased air turbine speed to
55,000 rpm (5160 rad/sec) in 15
seconds in a repeat of test series
2-4, 2--5, and 2-6. Bearings seized
immediately resulting in immediate
speed reduction.

Inspection Summary All segmented cages had fractured due
to bearing seizure in Test 4-4. Inspec-
tion of the silicon nitride balls
revealed that three balls were cracked
during test 4-4,

Test 5

Test Objective Evaluate segmented cage design L-23845
and shrouded cage L-23846 at low speed.

Test Conditions • 100 ]bs (450 N) axial load

"* Housing temperature 80OF (270C)

"* Air cooling supplied at 11 SCFM.

Test Summary The test bearings were tested at 5000
rpm (525 rad/sec) for 20 minutes, then
speed decreased to 2,000 rpm at a
constant turbine air inlet pressure.
The turbine eventually stopped at a
constant air pressure indicating an
increase in bearing torque.
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Inspection Summary The shrouded graphite cage exhibited
very little evidence of wear in the
ball pockets. The steel rings for this
bearing did not appear to have a
graphite coating. The segmented cage:1 exhibited considerably more wea. due to
the balls sliding against the cagepocket.

Test 6

Test Objectives Repeat of Test 5.

Test Conditions Same as test 5.

Test Summary Started test rig accelerated turbine to
10,000 rpm. Turbine stopped after 2.5
minutes of testing at a turbine inlet
pressure of 6.5 psi. Restarted the
turbine by rotating the shaft by hand.
Turbine speed varied from 7,000 rpm to
1,000 rpm over the next 20 minutes.
Variations in speed from 5,000 to
13,000 rpm were observed at an increased
turbine inlet pressure of 10 psi over

the next 78 minutes. The test system
was stopped after 100 minutes of test
at low speed.

Inspection Summary Both bearings were in excellent con-
dition after test 6. Graphite cage
pocket wear for the shrouded cage was
considerably heavier than in test 5.
Very little graphite was observed on
the steel ring surfaces possibly
indicating that the graphite was
removed by the cooling air flow through
the bearings.
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Test 7

Test Objectives Continued evaluation of segmented cage
design L-23845 and shrouded cage design
L-23846.

Test Conditions 0 100 lbf (450 N) axial load

0 no cooling air supplied to bearing
cavity

Test Summary Tested the bearings for 33 minutes at
shaft speeds between 5,000 rpm and
22,000 rpm. Test was halted after 33
minutes due to the silicon nitride
balls contacting the stainless steel
shroud. The following table presents
the bearing temperatures recorded for
the bearing containing the segmented
cage.

Time (min) Speed (RPM) Inner Rinq Outer Ring AT
Temp oF mpF

0 5,000 350 150

S6 10,000 350 250 100

13 10,000 420 290 130

16 13,000 450 310 140

20 14,000 505 340 165

24 14,000 550 375 175

28 17,000 580 425 155

29 18,000 395 430 160

30 18,000 630 455 375

33 15,000 680 490 190

Inspection Summary Graphite coating prevalent on ai4
bearing surfaces with the segmented
cage. The cage design L-23845 waa in
excellent condition, while in the
shrouded design the balls had contacted
the steel shroud. All other bearing
components were in excellent condition.
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Test 8

Test Objectives Evaluate two shrouded cages simultane-
ously.

Test Conditions • 100 lbf (450 N) axial load

* No cooling air
Test Summary Bearing test could not be conducted due

to cage unbalance at low speed. Severe
"rattling" of the shrouded cages pre-
vented the test.

Inspection Summary Graphite cage pockets had a small wear
mark. Graphite transfer films were not
visible on the M50 bearing surfaces.
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